26,686 research outputs found

    Canonical Quantization of SU(3) Skyrme Model in a General Representation

    Full text link
    A complete canonical quantization of the SU(3) Skyrme model performed in the collective coordinate formalism in general irreducible representations. In the case of SU(3) the model differs qualitatively in different representations. The Wess-Zumino-Witten term vanishes in all self-adjoint representations in the collective coordinate method for separation of space and time variables. The canonical quantization generates representation dependent quantum mass corrections, which can stabilize the soliton solution. The standard symmetry breaking mass term, which in general leads to representation mixing, degenerates to the SU(2) form in all self-adjoint representations.Comment: 24 RevTex4 pages, no figure

    Isospin Effects on Astrophysical S-Factors

    Full text link
    We estimate the ratios of bare astrophysical S-factors at zero incident energy for proton and deuteron induced reactions in a model which assumes a compound nucleus formation probability plus a statistical decay. The obtained ratios agree well with available experimental values, as far as the reactions which have dominant s-wave entrance channel components are investigated. Due to its simplicity the model could be used as a guidance for predictions on reactions which have not been investigated yet.Comment: 12 pages, 1 figure

    Influence of QED Corrections on the Orientation of Chiral Symmetry Breaking in the NJL model

    Full text link
    We study QED corrections to chiral symmetry breaking in the Nambu--Jona-Lasinio (NJL) model with two flavors of quarks. In this model, the isospin symmetry is broken by the differences between the current quark masses and the electromagnetic charges of the up and down quarks. To leading order in the 1/N expansion, we calculate the effective potential of the model with one-loop QED corrections at finite temperature. Evaluating the effective potential, we study the influence of the isospin symmetry breaking on the orientation of chiral symmetry breaking. The current quark mass plays an essential role in maintaining the orientation of the chiral symmetry breaking. If the average of the up and down quark masses is small enough, we find a phase in which the pion field has non-vanishing expectation value and dynamical CP violation takes place.Comment: 22 pages, 13 figures; added discussion about pion mass differenc

    Regularization dependence on phase diagram in Nambu-Jona-Lasinio model

    Get PDF
    We study the regularization dependence on meson properties and the phase diagram of quark matter by using the two flavor Nambu-Jona-Lasinio model. We find that the meson properties and the phase structure do not show drastically difference depending the regularization procedures. We also find that the location or the existence of the critical end point highly depends on the regularization methods and the model parameters. Then we think that regularization and parameters are carefully considered when one investigates the QCD critical end point in the effective model studies.Comment: 28 page

    Anisotropic Electronic Structure of the Kondo Semiconductor CeFe2Al10 Studied by Optical Conductivity

    Full text link
    We report temperature-dependent polarized optical conductivity [σ(ω)\sigma(\omega)] spectra of CeFe2_2Al10_{10}, which is a reference material for CeRu2_2Al10_{10} and CeOs2_2Al10_{10} with an anomalous magnetic transition at 28 K. The σ(ω)\sigma(\omega) spectrum along the b-axis differs greatly from that in the acac-plane, indicating that this material has an anisotropic electronic structure. At low temperatures, in all axes, a shoulder structure due to the optical transition across the hybridization gap between the conduction band and the localized 4f4f states, namely cc-ff hybridization, appears at 55 meV. However, the gap opening temperature and the temperature of appearance of the quasiparticle Drude weight are strongly anisotropic indicating the anisotropic Kondo temperature. The strong anisotropic nature in both electronic structure and Kondo temperature is considered to be relevant the anomalous magnetic phase transition in CeRu2_2Al10_{10} and CeOs2_2Al10_{10}.Comment: 5 pages, 4 figure

    Nonet meson properties in Nambu--Jona-Lasinio model with dimensional versus cutoff regularization

    Get PDF
    Nambu--Jona-Lasinio (NJL) model with Kobayashi-Maskawa-'t Hooft (KMT) term is one of low energy effective theory of QCD which includes the UA(1)U_A(1) anomaly. We investigate nonet meson properties in this model with three flavors of quarks. We employ two type of regularizations the dimensional and sharp cutoff ones. The model parameters are fixed phenomenologically for each regularization. Evaluating the kaon decay constant, the η\eta meson mass and the topological susceptibility, we show the regularization dependence of the results and discuss the applicability of the NJL model.Comment: 11 pages, 9 figure

    Phonon engineering with superlattices: generalized nanomechanical potentials

    Get PDF
    Earlier implementations to simulate coherent wave propagation in one-dimensional potentials using acoustic phonons with gigahertz-terahertz frequencies were based on coupled nanoacoustic resonators. Here, we generalize the concept of adiabatic tuning of periodic superlattices for the implementation of effective one-dimensional potentials giving access to cases that cannot be realized by previously reported phonon engineering approaches, in particular the acoustic simulation of electrons and holes in a quantum well or a double well potential. In addition, the resulting structures are much more compact and hence experimentally feasible. We demonstrate that potential landscapes can be tailored with great versatility in these multilayered devices, apply this general method to the cases of parabolic, Morse and double-well potentials and study the resulting stationary phonon modes. The phonon cavities and potentials presented in this work could be probed by all-optical techniques like pump-probe coherent phonon generation and Brillouin scattering

    Fermi Surface Nesting and Nanoscale Fluctuating Charge/Orbital Ordering in Colossal Magnetoresistive Oxides

    Full text link
    We used high resolution angle-resolved photoemission spectroscopy to reveal the Fermi surface and key transport parameters of the metallic state of the layered Colossal Magnetoresistive (CMR) oxide La1.2Sr1.8Mn2O7. With these parameters the calculated in-plane conductivity is nearly one order of magnitude larger than the measured DC conductivity. This discrepancy can be accounted for by including the pseudogap which removes at least 90% of the spectral weight at the Fermi energy. Key to the pseudogap and many other properties are the parallel straight Fermi surface sections which are highly susceptible to nesting instabilities. These nesting instabilities produce nanoscale fluctuating charge/orbital modulations which cooperate with Jahn-Teller distortions and compete with the electron itinerancy favored by double exchange
    corecore